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Abstract
Contact planning is crucial to the locomotion performance of robots: to properly self-propel forward, it is not only
important to determine the sequence of internal shape changes (e.g., body bending and limb shoulder joint oscillation) but
also the sequence by which contact is made and broken between the mechanism and its environment. Prior work observed
that properly coupling contact patterns and shape changes allows for computationally tractable gait design and efficient
gait performance. The state of the art, however, made assumptions, albeit motivated by biological observation, as to how
contact and shape changes can be coupled. In this paper, we extend the geometric mechanics (GM) framework to design
contact patterns. Specifically, we introduce the concept of “contact space” to the GM framework. By establishing the
connection between velocities in shape and position spaces, we can estimate the benefits of each contact pattern change and
therefore optimize the sequence of contact patterns. In doing so, we can also analyze how a contact pattern sequence will
respond to perturbations. We apply our framework to sidewinding robots and enable (1) effective locomotion direction
control and (2) robust locomotion performance as the spatial resolution decreases. We also apply our framework to a
hexapod robot with two back-bending joints and show that we can simplify existing hexapod gaits by properly reducing the
number of contact state switches (during a gait cycle) without significant loss of locomotion speed. We test our designed
gaits with robophysical experiments, and we obtain good agreement between theory and experiments.
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1. Introduction

In biological systems, animals properly coordinate their
internal degrees of freedom (DoF) and their interactions
with the environment to generate effective self-propulsion
for stable and deliberate locomotion (Hildebrand, 1965,
1967; Kafkafi and Golani, 1998; Full and Koditschek,
1999; Ijspeert et al., 2007; Marvi et al., 2014; Astley
et al., 2015). In legged and certain limbless systems
body parts are properly sequenced to make and break
contact with the environment in a way that achieves ef-
fective forward locomotion. Despite the advantages in
making and breaking environmental contact, reproducing
the capabilities of biological locomotors in robots is
challenging; if not properly controlled, contact breaking
can lead to unstable (Chong et al., 2021c) or uncoordinated
(Marvi et al., 2014) locomotion.

Given the importance of contact pattern design, contact
planning for robots has been extensively researched
(Bouyarmane and Kheddar, 2012; Marvi et al., 2014;
Astley et al., 2015; Gong et al., 2015; Aceituno-Cabezas

et al., 2017; Chong et al., 2021c). A popular approach to
contact pattern design is to take biological inspiration (Full
and Koditschek, 1999) and use it to guide the robot lo-
comotion control (Astley et al., 2015; Chong et al., 2021b;
Astley et al., 2020). Another popular approach to contact
pattern design is to use learning-based algorithms (Kohl
and Stone, 2004; Gong et al., 2015; Carpentier et al., 2017;
Hwangbo et al., 2019) to optimize contact patterns. While
existing approaches have demonstrated their efficacy in
various robots, little is known about the general principles
behind contact planning. It remains unclear why certain
contact patterns are effective and what happens if we
perturb the contact pattern (e.g., delay the landing/lifting of
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some limbs or body segments). Understanding such
principles can improve performance of the system, as well
as the ability to derive new gaits based on the ones already
determined.

Geometric mechanics has been developed as a general
scheme to understand the principles behind seemingly
complicated locomotion behaviors (Batterman, 2003; Kelly
and Murray, 1995; Marsden, 1997; Ostrowski and Burdick,
1998; Shapere and Wilczek, 1989; Wilczek and Shapere,
1989). Specifically, the motion of a locomotion system is
separated into a shape space (e.g., the internal joint angle
space) and a position space (position and orientation of
locomotor in the world frame). By establishing a mapping
between velocities in shape and position spaces, geometric
mechanics offers tools that allow us to visually analyze,
design, and optimize gaits.

Recent efforts have extended geometric mechanics to
mixed-contact systems (Chong et al., 2019, 2021b; Rieser
et al., 2019). However, in such schemes the contact pat-
terns are prescribed in the gait design process That is, the
geometric tools are used to design the coordination be-
tween body posture changes and the prescribed contact
patterns. As such, we cannot directly vary the contact
patterns and evaluate how it should affect locomotion
performance.

In this paper, we extend the geometric mechanics
framework to design, analyze, and optimize contact patterns
for robot locomotion. Specifically, we consider each contact
state as an independent map connecting the shape space and
position space. We then seek the optimal “switching” points
between these maps that lead to the desired motion. Using
the Hodge–Helmholtz theorem, which is explained in
(Bhatia et al., 2012), we show that we can find the optimal
transition points in the shape space. In the cases where there
are more than three contact states, we prove that the contact
sequence design problem can be reduced to a graph opti-
mization problem (Schrijver, 2003, p. 114). We then apply
our framework to design gaits for limbless and legged
robots. We show that we can design effective sidewinding
gaits for limbless robots with reduced spatial resolution
(e.g., a 6-link limbless robot, Figure 1(a)). In addition, we
show that we can modulate the heading1 for a sidewinding
limbless robot moving in an isotropic environment. Finally,
we apply our contact sequence design framework to design
gaits for an existing hexapod robot. Specifically, since most
unstable behaviors in legged locomotion occur during
contact switchs (Bai et al., 2019; Li et al., 2016), we use our
framework to improve hexapod gaits by reducing the
number of contact switches (within one period) without
causing significant loss in locomotion performance. Our
theoretical predictions are verified by robophysical exper-
iments (Aguilar et al., 2016).

2. Background on geometric mechanics

In this section, we provide an overview of the geometric
mechanics tools, which build the foundation of the

framework introduced in this paper. For a more detailed
and comprehensive review, we refer readers to Ostrowski
and Burdick (1998); Marsden and Ratiu (2013); Gong
et al. (2018); Hatton and Choset (2015); Zhong et al.
(2018). The geometric mechanics gait design framework
separates the configuration space of a system into two
spaces: a position space and a shape space. The position
space represents the location (position and rotation) of a
system in the world frame, while the shape space denotes
the internal shape of the system, for example, the joint
angles. The geometric mechanics framework then es-
tablishes a functional relationship which maps velocities
in the shape space to velocities in the position space; this
functional relationship is often called the local connec-
tion (Hatton et al., 2013).

2.1. Kinematic Reconstruction Equation

In kinematic systems where inertial effects are negligible,
the equations of motion (Marsden and Ratiu, 2013) can be
approximated as follows.

ξ ¼ AðrÞ _r, (1)

where ξ ¼ ½ξx, ξy, ξθ�T denotes the body velocity in the
forward, lateral, and rotational directions, respectively; r
denotes the internal shape variables (joint angles); A(r) is
the local connection matrix, which encodes environ-
mental constraints and the conservation of momentum.
While there has been research extending geometric
mechanics to higher dimensions (Chong et al., 2019;
Ramasamy and Hatton, 2016), the analysis and visuali-
zation power of geometric mechanics are particularly
effective when the shape variable is 2-dimensional, that
is, r2R

2. In the applications where there are more than
two joints (e.g., N degrees-of-freedom), we use two shape
basis functions (Hatton et al., 2013) to reduce the di-
mensionality of the system. As reported in Gong et al.
(2016), we can simplify the shape basis function by using
a basis vector. To wit,

w ¼ ½β1, β2�r,
where β1 and β2 are column vectors of shape basis
functions. In the application to snake robots, prior work
(Hatton et al., 2013; Gong et al., 2016) chose the shape
basis functions to be:

Figure 1. Robots with variable contact states: (a) A 6-link
sidewinding limbless robot, (b) a 12-link sidewinding limbless
robot, and (c) a hexapod robot with two body-bending joints.
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β1ðiÞ ¼ sin

�
2πfs

i

N � 1

�
,

β2ðiÞ ¼ cos

�
2πfs

i

N � 1

�
, 1 ≤ i ≤N

(2)

where βm(i) is the i-th element of the vector βm, fs is the
spatial frequency of the body undulation, i denotes the joint
index, and N is the total number of joints.

2.2. Numerical derivation of local
connection matrix

The local connection matrix A can be numerically derived
using resistive force theory (RFT) to model the ground re-
action force (Li et al., 2013; Sharpe et al., 2015; Zhang and
Goldman, 2014; Hu et al, 2009). In this subsection, we provide
a brief derivation of the local connectionmatrix needed for this
paper.

The ground reaction force (GRF) experienced by the lo-
comotor is the sum of the GRF experienced by each body
segment. We assume that for each segment, the GRF acts on
the center of the segment. RFT decomposes the resistive forces
experienced by a body segment of a locomotor into two
components: thrust (perpendicular) and drag (parallel), that is,

F ¼
X
i2I

�
Fi

k þ Fi
’

�
,

where Fi
k and Fi

’, respectively, denote forces parallel and
perpendicular to the segment i; I is the collection of all the
modules that are instantaneously in contact with the envi-
ronment which we indicate using the following binary
function, described in section 3.1., I = {i | c(i) = 1}. Note that
here we assume the supporting forces/pressures are uni-
formly distributed among all the contacting segments. In
many applications, the attack angle (the angle of body
velocity with respect to the orientation of the body segment)
determines the Fk and F’ on this body segment, that is,

Fk ¼ FkðχÞ,F’ ¼ F’ðχÞ,
where χ is the attack angle. Fk and F’ are approximately
independent of the magnitude of the velocity in granular and
frictional systems (Zhang and Goldman, 2014). Depending
on the substrate, we can choose the corresponding RFT
functions to approximate the ground reaction forces.

The attack angles χ of each segment can be calculated
from the body velocity ξ, body shape r, and shape velocity _r
(Murray, 2017). Assuming damping overwhelms inertia, we
consider the total net force applied to the system to be zero at
any instance in time:

F ¼
X
i2I

�
Fi

kðξ, r, _rÞ þ Fi
’ðξ, r, _rÞ

� ¼ 0: (3)

At a given body shape r, equation (3) connects the shape
velocity _r to the body velocity ξ. Therefore, by the implicit
function theorem and the linearization process, we can
numerically derive the local connection matrix A(r). In our

implementation, we compute the solution of equation (3)
using the MATLAB function fsolve.

2.3. Connection vector fields and
height functions

Each row of the local connection matrix can be regarded as a
vector field over the shape space, called the connection vector
field. In this way, the body velocities in the forward, lateral, and
rotational directions are computed as the dot product of con-
nection vector fields and the shape velocity _r. We focus here on
the first row of the local connection matrix because it represents
body velocity in the forward direction. This connection vector
field is so named because it connects the shape variables r to the
body velocity variable in the forward direction.

The displacement along the gait path ∂f can be obtained
by integrating the ordinary differential equation (Hatton and
Choset, 2015) below:

gðTÞ ¼
Z
∂f
TeLgðrÞAðrÞdr, (4)

where gðrÞ ¼
2
4 xðrÞ
yðrÞ
θðrÞ

3
5 represents the position and rotation

of body frame viewed in the world frame at position r
(Murray, 2017), T is the time period of a gait cycle, and

gðTÞ ¼
2
4 Δx
Δy
Δθ

3
5 denotes the translation and rotation of the

body frame (with respect to the world frame) in one gait
cycle. Note that TeLg is the left-lifted action with respect to
the coordinates of g:

TeLg ¼
2
4 cosðθÞ �sinðθÞ 0
sinðθÞ cosðθÞ 0
0 0 1

3
5:

Each of the three integrals of equation (4) can be ap-
proximated to the first order as follows.

0
@ Δx

Δy
Δθ

1
A ¼

Z
∂f
AðrÞdr ¼

Z
∂f

2
4AxðrÞ
AyðrÞ
AθðrÞ

3
5dr, (5)

where Ax, Ay, Aθ are the three rows of the local connection,
respectively. The accuracy of the approximation in equation
(5) can be optimized by properly choosing the body frame
(Hatton and Choset, 2015; Lin et al., 2020). According to
Stokes’ theorem, the line integral along a closed curve ∂f is
equal to the surface integral of the curl of A(r) over the
surface enclosed by ∂f:

Z
∂f
AðrÞdr ¼

ZZ
f

=×AðrÞdr1dr2, (6)

where f denotes the surface enclosed by ∂f. The curl of
the connection vector field, =×A(r), is referred to as a
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height function (or collectively as the constraint curva-
ture functions, CCFs) (Hatton and Choset, 2015). The
three rows of the local connection matrix A(r) can thus
produce three height functions in the forward, lateral, and
rotational directions, respectively.

With the above derivation, the gait design problem is
simplified to drawing a closed path in the shape space. Net
displacement over a period can be approximated by the
integral of the surface enclosed by the gait path. Hence, the
maximization of the integral leads to the maximization of
displacement.

2.4. Effect of Drag Anisotropy

Locomotion effectiveness can be highly dependent on the
ground reaction forces. Specifically, while terrestrial
limbless robots can achieve good mobility on granular
media using lateral undulation, they often struggle on
frictional ground (Alben, 2019). To illustrate how the
geometric approach provides insight into substrate depen-
dence we compare the height function for an 8-link snake
robot (with fs = 1.5) moving on surface of a model granular
media (poppy seeds) and frictional ground (Figure 2).

The ground reaction forces governing the interaction
of body segments and granular media are well studied
when moving on a granular surface. The forces F’ and Fk
(McInroe et al., 2016) can be approximated by:

f’ ¼ CsinðχÞ, fk ¼ AcosðχÞ þ Bð1� sinðχÞÞ þ F0,

where χ is the attack angle; C = 0.66, A = 0.27, B = �0.32,
F0 = 0.09 is the empirically fitted function to characterize
the granular media resistance force (Aguilar et al., 2016;
Schiebel et al., 2020). From the structure and magnitude of
its height function (Figure 2(a)), we see that, with proper
gaits, the robot can move effectively on granular media as
discussed in Schiebel et al. (2020).

The ground reaction force between the body segments
and the frictional ground can then be modelled by dry
Coulomb kinetic friction:

f’ ¼ f0sinðχÞ, fk ¼ f0cosðχÞ,
where f0 = μF is the magnitude of the Coulomb kinetic
friction, μ is the coefficient of friction, and F is the
magnitude of the normal supporting force. The height
function (Figure 2(b)) suggests that the robot has almost
negligible speed regardless of the choices of gaits.
However, it is important for limbless robots to move
effectively on frictional ground. Inspired by sidewinding
snakes (Marvi et al., 2014), limbless robots can greatly
improve the maneuverability by properly controlling
their contact patterns (Astley et al., 2015).

3. Contact scheduling

In the previous section where we modeled systems with
continuous contact, we made an assumption that there is no

change in contact states throughout the gait. This will be
explained in section 3.1. In this section, we show that if we
relax this assumption, we can greatly improve locomotor
performance.

3.1. Single Contact State

Consider a 12-link limbless robot moving on frictional
ground. We assign a binary variable to each link, c(i), such
that c(i) = 0 denotes link i in swing phase (no contact) and
c(i) = 1 denotes link i in stance phase (full contact). As we
will discuss below, the structure of the robot is such that c
(2i) = c (2i � 1) I = { i | c(i) = 1} (Chong et al., 2021c).

For illustration purpose, we consider three examples of
contact states: I1, I2, and I3:

Contact state c (1) c (3) c (5) c (7) c (9) c (11)
c (2) c (4) c (6) c (8) c (10) c (12)

I1 1 0 1 1 0 1
I2 1 1 0 1 1 0
I3 0 1 1 0 1 1

Note that none of these contact states are dependent on r.
Their realizations can be visualized in Figure 3(a)-(c). For

Figure 2. Vector fields and height functions for an 8-link robot on
granular media and frictional ground with continuous contact.
(a) A schematic sketch, vector field, and height function for an 8-
link robot moving on granular media (poppy seeds). The height
function has a large magnitude. (b) The sketch, vector field, and
height function for an 8-link robot moving on frictional ground.
The axes of all shape space are identical. The color bar of height
functions in (a) and (b) is identical. The unit of the color bar in
the height functions is BL/π2.
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each contact state, we compute its vector field and height
function in the lateral direction (Figure 3(a)-(c)). We ob-
serve that in all cases, the height functions do not have
regular patterns and their magnitude is low, which indicates
limited mobility when a limbless robot uses a single contact
state.

3.2. Mixed contact state

Although each individual contact state cannot lead to effective
displacement, previous work demonstrated that their combi-
nation can enable new motion behaviors. In this section, we
evaluate the locomotion performance of mixed contact states.
For example, we construct the contact state as follows.

ðr1, r2Þ
8<
:

I1 if atan2 ðr2, r1Þ 2 ð7π=6, 11π=6�
I2 if atan2 ðr2, r1Þ 2 ðπ=2, 7π=6�
I3 if atan2 ðr2, r1Þ 2 ð�π=6, π=2�

: (7)

where atan2 is the four-quadrant inverse tangent operator. In
this way, we can rewrite the local connection as follows.

ðr1, r2Þ
8<
:

A1 if atan2 ðr2, r1Þ 2 ð7π=6, 11π=6�
A2 if atan2 ðr2, r1Þ 2 ðπ=2, 7π=6�
A3 if atan2 ðr2, r1Þ 2 ð�π=6, π=2�

: (8)

Its realization is shown in Figure 3(d.1). We then obtain
the vector field and height function using equation (7); these
are shown in Figure 3d (2-3). Interestingly, the new height
function has substantially higher magnitude than constant
contact height functions in Figure 3(a-c)2, and exhibits
regular patterns (dark region along the boundary).

3.3. Optimal contact scheduling

Note that equation (7) is manually designed, inspired by
biology and empirical experience (Astley et al., 2015;
Rieser et al., 2019; Astley et al., 2020). Thus, the optimality
of equation (7) remains unclear. To explore the optimization
of contact patterns, we formulate the following optimization
problem. To simplify our problem, we limit the number of
contact states to 3. Note that the first row (called the Ax-
component) of the local connection in equation (8) defines a
discontinuous vector field on shape space. Moreover, the
restriction on the polar angle of points (r1, r2) defines a
partition of the shape space M. Let

M1 ¼ fðr1, r2Þ2M jatan2 ðr2, r1Þ2ð7π=6,11π=6�g[fð0;0Þg
M2 ¼ fðr1, r2Þ2M jatan2 ðr2, r1Þ2ðπ=2,7π=6�g∖fð0;0Þg
M3 ¼ fðr1, r2Þ2M jatan2 ðr2, r1Þ2ð�π=6,π=2�g∖fð0;0Þg

:

By construction, every point of the shape spaceM lies in
precisely one of the sets M1, M2 or M3.

Next we explain how to perform a contour integral, (5),
of the discontinuous vector field Ax (r1, r2) that is defined in
formula (8) along the unit circle. Let l = ∂D2 denote the unit
circle in M, and note that the three intersections li = l \ Mi

are each an arc of the unit circle of arc length 2π/3. Let
li ¼ l\Mi denote the closure of each arc. Then each pairwise
intersection li\lj consists of a single point. Specifically,

l1\l2 ¼ ðcosð7π=6Þ, sinð7π=6ÞÞ,
and so on. These intersection points will be important later
when we apply the fundamental theorem of line integrals.
We can now split up the contour integral (5) as follows

Δx ¼
Z
l

AxðrÞdr ¼
X3

i¼1

Z
li

Ax
i ðrÞdr

We focus here only on Δx, but a similar computation can
be performed for Δy and Δθ. This example provides mo-
tivation for the following problem.

Problem 1.Given 3 vector fieldsAx
1,A

x
2,A

x
3 in a shape space

M, let p be any partition M ¼ Mp
1[Mp

2[Mp
3 such that each

subset Mp
i has positive volume. Define a discontinuous

vector field Ax
p on M by the following formula

Figure 3. Example of a mixed contact pattern. (a)–(c) The vector
fields and height functions for three contact states I1, I2, and I3.
Corresponding robot links which are in contact with the
environment are denoted by red, black, and grey. The color bars of
height functions in (a), (b), and (c) are identical. (d.1) The
contact pattern prescribed by equation (7). (d.2) The vector field
prescribed by equation (8). (d.3) The corresponding height
function. The axes of all shape space are identical. The unit of
the color bar in all height functions is BL/π2.
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Ax
pðrÞ ¼ Ax

i ðrÞ if r2Mp
i :

Let Lp be the set of closed loops l in M such that for i = 1,
2, 3, the intersection l\Mp

i is connected and simply con-
nected. We wish to optimize

max
l, p

)l A
x
pðrÞdr"l 2Lp

where the maximum is taken over all loops l in Lpand over
all partitions of M.

Since each region l\Mp
i is connected and simply con-

nected, we may define the following:

l1 ¼ l\Mp
1 , l2 ¼ l\Mp

2 , l3 ¼ l\Mp
3 ,

fqβg ¼ l1\l3, fqγg ¼ l1\l2, fqαg ¼ l2\l3,
(9)

where the overline denotes the closure of a set. We do not
decorate li with overlines, so as to keep the notation simple.
Then

)lA
x
pðrÞdr ¼

X3

i¼1

Z
li

Ax
i ðr1, r2Þdr: (10)

Note that in equation (10), each component is path-
dependent, which is not desirable. From the Hodge–
Helmholtz theorem, any vector field can be decomposed
into the sum of a curl-free component, ðAx

1Þc, and a
divergence-free component, ðAx

1Þd . In other words,

Ax
1 ¼

�
Ax

1

�
c
þ �

Ax
1

�
d
:

Note that in our applications, the curl-free component
has a much greater magnitude than the divergence-free
component (Figure 4(a)). Therefore, we approximate the
line integral in the original vector field by the line integral in
the curl-free component from the Hodge–Helmholtz de-
composition. Note that in the case where the divergence-
free component has comparable magnitude as the curl-free
component, we can use the divergence-free components to
determine the paths connecting the intersections once we
determine the partition.

For curl-free vector fields, the line-integral is path-
independent. Suppose, the corresponding potential
functions of the curl-free components are Px

1,P
x
2,P

x
3, re-

spectively. These potential functions are graphed in
Figure 4(b). By the fundamental theorem of line integrals,
we haveZ

l1

Ax
1ðr1, r2Þdr ≈

Z
l1

�
Ax

1

�
c
ðr1, r2Þdr ¼ Px

1ðqβÞ �Px
1ðqγÞ:

The approximation comes from the fact that the curl-free
component of the connection vector field (in isotropic
environments) dominates over the divergence-free

component. The other two terms in (10) are decomposed
similarly. Then our objective function becomes

)lAðrÞdr ≈
�
Px
1ðqβÞ � Px

1ðqγÞ
�þ �

Px
2ðqγÞ � Px

2ðqαÞ
�

þ �
Px
3ðqαÞ � Px

3ðqβÞ
�

¼ �
Px
3 � Px

2

�ðqαÞ þ �
Px
1 � Px

3

�ðqβÞ
þ �

Px
2 � Px

1

�ðqγÞ
¼ Px

αðqαÞ þ Px
βðqβÞ þ Px

γðqγÞ,

(11)

where Px
α : ¼ Px

3 � Px
2, P

x
β : ¼ Px

1 � Px
3, and Px

γ : ¼ Px
2 �

Px
1 are the potential function differences (PFDs)

(Figure 4(c)). Note that our objective function has sepa-
rated parameters—the coordinates of qα, qβ, qγ. In addition,
the choices of partition and l imply that all three

Figure 4. Illustration of a contact pattern optimization. (a) The
vector field and its curl-free component and divergence-free
component by the Hodge–Helmholtz decomposition. (b) The
potential functions for P1, P2, and P3. Note that in curl-free
components, the line integral is path-independent, allowing us to
compute the potential function to estimate the line integral
between any points. (c) The potential function difference for Pγ =
P2 � P1, Pα = P3 � P2, and Pβ = P1 � P3. The axes of all shape
spaces are identical. The unit of the color bar in all potential
function differences is BL/π2.
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intersection points could be arbitrary points in M. As a
result, when (11) is optimized, so are the three individual
terms in (11). Therefore, qα is the point inM that optimizes
the univariate function Px

α. Parameters qβ, qγ are charac-
terized similarly.

Since the vector fields Ax(r) are given, so are the PFDs
Px
α,P

x
β,P

x
γ . Thus, we can find the optimal contact scheduling

by solving these three individual optimization problems. In
practice, if we discretize the values of Px

α,P
x
β,P

x
γ , we can

apply numerical algorithms to solve these optimization
problems.

Once qα, qβ, qγ are found, we can then choose a generic
point q0 inM. For convenience, let q0 be the origin. Choose
a curve connecting q and qα to Mp

2\Mp
3 . The other two

boundaries are obtained by connecting and extending q, qβ
and q, qγ, and we obtain the partition p, which leads to the
optimal contact scheduling.

3.4. Applications to more than three
contact states

Our methods can be applied to systems with more than three
states. In practice, however, it is surprisingly challenging to
directly applying our methods to systems with more than
three contact states.

3.4.1. NP-hardness. Consider a locomotion system with
multiple contact states I. We construct a weighted-directed
complete graphG (V, E), where vertices vi2 V correspond to
contact states Ii 2 I, and the edge from vi to vj has weight wij,
as the cost to transit from contact state Ii to contact state Ij.
From our previous analysis, the edge weight wij can be
approximated by the maximum value in the potential
function difference (Pi � Pj), which we can numerically
calculate.

To find the optimal contact sequence and the associated
shape changes, we need to find a cycle C passing each of the
n vertices exactly once, such that the sum of weights alongC
is maximal. This is a special case of the longest path
problem, which is NP-hard because of the NP-hardness of
the Hamiltonian cycle problem (Schrijver 2003, p. 114).

Constraints. Solving the longest path problem, we may
obtain an optimal cycle C and a corresponding loop in the
shape space. However, in many cases, such paths can be
considered as “multiple-period-gaits.”

In our framework, we seek to maximize the displacement
within one period. In other words, a gait is defined as a
closed curve in the shape space,M, defined on an interval [0,
T]. The set of all gaits is defined as follows

Ψ ¼ �
ψ 2C1

		 ψ : ½0, T �→M ,ψð0Þ ¼ ψðTÞ
 (12)

Following this definition, the trajectories in Figures 5a
and 5(b) are both considered as gaits. However, the gait in
Figure 5(a) has an unfair advantage over the gait in
Figure 5(b) because the blue path winds around the origin

twice in one period, which takes two periods for the red
path. Thus, the blue path should be penalized by dividing by
the winding number. For simplicity, we only consider gaits
that are simple closed curves. Thus, we define a gait to be a
“multiple-period-gait” if it is non-simple.

Such “multiple-period-gaits” could be intentionally
avoided if we directly design the trajectory in the shape
space. However, when the gait design is abstracted to a
graph G (V, E), it is challenging to include such constraints
in the optimization. In Figure 5(c), we show an example of
“multiple-period-gait” trajectory and the transitional points.

Initialization by empirical gaits. While it is challenging to
directly apply our methods to systems with more than three
contact states, our framework can still offer insights into the
analysis of these problems. For example, instead of solving
the contact design by brute-force, we can start with an
empirically derived gait and check (1) if the empirical gait is
already at the local optimum and (2) if we can further
improve this empirical gait.

4. Results

4.1. Experimental setup

Limbless robot. We carried out robophysical experiments
with a modular limbless robot composed of identical
modules actuated by Dynamixel AX-12A servo motors
(Figures 1(a) and 1(b)). The number of modules varied
according to the gait tested, but the arrangement of modules
always followed the convention that the rotation axes of two
neighboring modules were perpendicular to each other.
Thus, all rotation axes of odd modules lie in the same plane

Figure 5. Example of multiple-period-gaits: (a) An example of a
“multiple-period-gait” path in the shape space. (b) An example
of a normal gait path in the shape space. (c)The transitional points
(from 1 to 5) are placed such that they wind the origin more than
once. It is considered as a multiple-period-gait in practice. (d)
An example of a single-period-gait generated by connecting the
transitional points.
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and the same is true for even modules. In experiments, odd
modules were actuated to control the body shape in the
horizontal plane and even modules were for the vertical
plane.

4.1.1. Hexapod robot. We also validated our method on a
hexapod robot with two rotational degrees of freedom in the
body and one rotational degree of freedom in each leg
(Figure 1(c)). The 30-cm-long elongated body is segmented
by two bending joints which allows ±90 degrees of rota-
tions. Each segment of the body is equipped with two legs
on both sides, and lifting and landing of the leg are con-
trolled by the rotational joint at the shoulder. All rotational
joints of the robot are actuated by Dynamixel AX-12A servo
motors. The body of the robot can be lifted up to 5 cm above
the landing surface of feet.

4.1.2. Robot Experiment. Experiments were conducted on
flat, frictional ground, with the assumption that the ground
reaction forces can be modelled by dry Coulomb kinetic
friction with friction coefficient μ = 0.35 ± 0.06 (between the
plastic body and the frictional ground). The joints of the
robot were controlled by direct joint angle set-point com-
mands. We conducted three repeat experiments for each gait
we tested. In a single experiment, the robot executed three
complete gait cycles.

To track the robot’s motion in its position space, six IR
reflective markers were attached along the body of the robot
with equal distance along the body. An OptiTrack motion
capture system with six OptiTrack Flex 13 cameras was
used. 3D positions of the markers were tracked at a frame
rate of 120 FPS. The motions of the robot executing three
gait cycles were collected from when the robot formed the
first configuration until the robot reached the last
configuration.

We measured the angle of motion and displacement from
the robot motion data we collected. To calculate the angle of
motion for one experiment (3 complete gait cycles), we
selected the first and the last sets of marker positions, which
correspond to the initial and the ending robot configura-
tions, respectively. We then calculated the average geo-
metric center of the body for two configurations by taking
the mean of the position of markers. Thus, the trajectory of
the geometric center in the world frame can be determined
by connecting the starting and ending geometric centers.
Similarly, the angle of motion can be measured by the
angular difference between the geometry center trajectory
and the horizontal axes (perpendicular to the starting body
axis). The displacement can also be measured by the pro-
jection of the geometric center trajectory onto the
horizontal axes.

4.2. Modulating sidewinding angle of motion

In previous work (Astley et al., 2015; Chong et al., 2021c),
the sidewinding gait for limbless robots was decomposed
into two waves, one in the horizontal plane and one in the

vertical plane. In this way, the formulas of shape changes are
prescribed as follows:

θð2j� 1, tÞ ¼ Ahsin

�
2πK

2j� 1

N
þ 2πft

�
(13)

θð2j, tÞ ¼ Avsin

�
2πK

2j

N
þ 2πft þ f0

�
(14)

where j = 1, 2, …, N/2; θ(2j � 1, t) and θ(2j, t) refer to the
yaw joint angles and the pitch joint angles, respectively;K is
the spatial frequency of the sidewinding gaits; Ah and Av are
the amplitudes of the horizontal wave and the vertical wave,
respectively; f defines the temporal frequency; and f0 is the
phase lag between the horizontal and the vertical waves.

Rieser et al. (2019) showed that the track angle (the angle
between the direction of motion and the trajectories of the
“tracks” made by body–environment contact) can be
modulated by the amplitude of the horizontal wave, Ah. On
granular media, the measurement of track angle can give an
approximation to the angle of motion (the angle between the
direction of motion and the central axis of snake body).
However, with our analysis in (4), the net displacement of
sidewinding gaits on frictional ground is predominantly in
the lateral direction.

We tested the sidewinding gaits with a range of amplitudes
of the horizontal waveAh, from 20 to 60 degrees, on a 12-link
limbless robot moving on frictional ground. We found
through experiments that the angle of motion is almost in-
dependent of the amplitude (Figure 6(a)). Example experi-
ment videos for Ah = π/3 and π/9 can be found in the
supplementary video. Given the low effectiveness of altering
the horizontal amplitude on the motion angle modulation, we
sought to design a general control scheme that would
modulate this angle of motion in isotropic environments.

We applied our method to design sidewinding gaits for a
12-link robot and explore modulating the angle of motion.
Following the method introduced in Sec. II, we computed
the potential function difference in the forward, lateral, and
rotation directions (Figure 7). Note that the shape basis
function (equation (2)) and contact states (Table in Sec.
3.1) are subject to our choice. In concurrent work, we
illustrate that further optimization can be conducted
without manual choice of shape basis function or contact
states (Chong et al., 2023). We identified the three tran-
sitional points that maximized the displacement in lateral
directions, Qy ¼ fqyα, qyβ, qyγg. Note that we limited the joint

angle to π/3, that is, k[r1, r2]k2 < π/3. We then identified the
three transitional points that maximized the displacement
in forward direction, Qx ¼ fqxα, qxβ, qxγg. We observed that
the transitional points Qy can only lead to pure translation
(i.e., zero in forward and rotational directions). Further-
more, the transitional points determined by Qx can lead to
effective displacement in both forward and lateral direc-
tions and thus establish a finite angle. In this way, we
propose to modulate the angle of motion by a convex
combination of Qy and Qx:
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QðϵÞ ¼ ϵQx þ ð1� ϵÞQy (15)

where ϵ 2 [0, 1] is the coefficient of the convex combination
andQ (ϵ) are the transition points determined by the convex
coefficient ϵ.

In this way, using equation (15), we formulated an
equation to modulate the angle of motion. As shown in
Figure 6(b), data from robophysical experiments agreed
with our predictions, verifying the validity of our theoretical
approach (an example robophysical experiment video can
be found in the supplementary video). As such, we have
shown that our method is effective in modulating the angle
of motion for limbless sidewinding robots in isotropic
environments.

4.3. Sidewinding of a 6-link Robot

In certain applications such as search and rescue in obstacle-
rich environments, it could be desirable to have limbless
robots with short body length but high locomotive per-
formance in sidewinding. However, there is often a trade-off

between the body length and the locomotive performance
for limbless robots: if the size of the motor in each module is
fixed, it is only possible to reduce the size of the robot by
decreasing the number of motors, that is, decreasing the
degrees of freedom. The disadvantage of fewer motors can
be slower locomotion speed. As shown in Maladen et al.
(2011), even when executing the same gait, robots with few
motors have lower speed in granular swimming than those
with more motors.

We conducted a series of experiments using the same
motion equations but different number of motors. Specif-
ically, we fixed the parameters Ah = π/3, Av = π/9, K = 1.5,
and f = 0.1 and evaluated the relationship between the speed
and the number of motors, N. The experimental results are
shown in Figure 8. As expected, the displacement decreased
as the number of motors decreased until N = 10. Turning
behavior emerged at N < 10, which can be caused by the
unstable configurations in the gaits (Chong et al., 2021c).
These unstable turning behaviors led to high variability in
speed. An example of the unstable turning behavior for N =
6 can be found in the supplementary video.

Figure 6. Experiments on angle of motion modulation. (a.1) Snapshots of a robot implementing sidewinding gaits with different
amplitudes using sinusoidal templates (equations 13, and 14). Solid yellow arrow indicates the direction of motion lt and dashed blue
line lc indicates the central body axis. The angle between lc and lt is then defined as the angle of motion. (a.2) For the sidewinding gaits
using sinusoidal templates, the angle of motion is almost independent of the amplitude for robot moving in isotropic environments. Blue
solid line represents simulation, and black line with error bars is robophysical experimental data. (b.1) Comparison of snapshots of the
robot experiment and the simulation implementing the gait to modulate the angle of motion. (b.2) Modulation of the motion angle by
controlling the convex coefficient ε.
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We then used our method to design effective sidewinding
gaits for the 6-link robot. We first identified three stable
contact patterns for this 6-link robot such that the center of
mass is enclosed by the supporting polygon. Using the
methods introduced in Sec. II, we obtained the potential
function difference in lateral direction (Py

γ , P
y
α, and Py

β) and
rotational directions (Pθ

γ , Pθ
α, and Pθ

β). Interestingly, we

noticed that the magnitude of Py
β is significantly lower than

those in Py
γ and Py

α. Therefore, the lateral speed is almost

independent of the choice qβ; and given qγ and qα, we are
free to choose qβ such that the net rotation is zero.

Given the transitional points, we interpreted the
boundary of these contact states as the half line connecting
origin and chosen transitional points. We then computed the
corresponding vector field and height function.

We implemented our designed gaits in robot experi-
ments. The experimental data shows quantitative agreement
with the theoretical predictions. An example video of the

6-link robot experiment can be found in the supplementary
video. Interestingly, we noticed that with proper design of
the contact pattern, the speed of 6-link robot can even out-
perform a robot with 12 links (Figures 8(c) and 9).

4.4. Application to legged robots

Consider a hexapod robot with two body-bending joint
angles (Figure 1(c)). Each foot has two contact states: stance
phase and swing phase. In this way, there are in total 26 =
64 contact states for the hexapod robot. As discussed before,
it is difficult to incorporate the winding number constraints
into the abstracted Hamiltonian cycle optimization problem.
Instead, we started from an empirical hexapod gait (duty
factor = 0.5 and lateral phase shift = 2/3) (Chong et al.,

Figure 7. Modulating the angle of motion using contact pattern
optimization. The potential function difference (PFD) in
forward (a), lateral (b), and rotational (c) directions. The black
circles indicate our joint angle limit: k[r1, r2]k2 ≤ π/3. The set of
extreme points ðQx ¼ fqxγ , qxα, qxβ, gÞ are chosen to maximize the
sum of PFD in forward directions. The set of extreme points
ðQy ¼ fqyγ , qyα, qyβ, gÞ are chosen to maximize the sum of PFD in
lateral directions. The axes of all shape spaces are identical. The
color bar of PFD in (a) is identical. The unit of the color bar in all
PFDs is BL/π2.

Figure 8. Sidewinding with few links. (a) Snapshots of a 6-link
robot implementing the sidewinding gait with the sinusoidal
templates (equation (13) and (14)). (b) Snapshots of a 6-link robot
implementing the sidewinding gait with our optimization method.
(c) The sidewinding speed (in unit BL per cycle) as a function of
link numbers (sidewinding gait is prescribed using the sine wave
template). Blue solid line represents simulation, and black line with
error bars is robophysical experimental data. The speed
decreases as the link number decreases until N = 10. For N < 10,
the configuration is unstable and turning emerged. The speed of the
gait with our optimization method is highlighted as a diamond
marker.
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2022) and checked if this empirical gait is a local optimum,
or whether we could further improve the locomotion per-
formance. The robophysical model implementing the em-
pirical gaits is shown in Figure 11.

In the empirical gait, there are six contact states (Figure 10).
Consider a shape space composed by w1 (the upper body
bending joint angle) and w2 (the lower body bending joint
angle); the connection vector field for each contact state is
almost curl-free, leading to the low magnitude on the height
function. In the empirical gait, these six contact states are

properly sequenced and placed in the shape space. The new
vector field (by partitioning from six vector fields) is shown in
Figure 12(a). The new vector field therefore has a large curl,
leading to a large magnitude in the height function.

We used our framework to evaluate whether the tran-
sitions of empirical gaits are local optima. We computed the
corresponding potential function difference for each contact
state transition and labeled the transitional points with black
stars. We notice that for each contact state transition, there
exists a range of shape positions where the contact

Figure 9. Designing sidewinding gaits for a 6-link robot. (a) Three
stable contact patterns and their corresponding vector fields. (b)
The PFD of lateral and rotational directions. The color bars of
PFD are identical in three illustrations. The black circle indicates
the robot’s joint angle limit: k[r1, r2]k2 ≤ π/3. (c) The boundary
of each contact state, the vector field, and the height function with
the optimal contact pattern, determined from the obtained
transitional points. The unit of color bar in height function is
BL/π2.

Figure 10. Contact states, vector fields, and height functions for a
hexapod robot. The contact states from the empirical gait (left).
The (almost curl-free) vector field corresponds to the contact state
(middle). The height function associated with the contact states
(right). The shape space has the same axis and color bar as
labeled in the first row. The unit of color bar in the height function
is BL/π2.
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Figure 11. Robophysical model implementing the empirical and simplified hexapod gaits (top). Snapshots of a robophysical model
implementing original (top) and simplified (bottom) hexapod gaits. Note that there are six contact states in original gait and four in
simplified gait. The displacements of two gaits per cycle are similar.

Figure 12. Simplifying the empirical hexapod gait. (a) The partition of the vector field from empirical gaits. Such partitioning can create
a large curl in the vector field and thus have large magnitude in the height function. (b) The PFD for each contact state transition. Two
out of six transitional points are non-optimal (labeled in the dashed box). The orange circle denotes the joint angle limit (π/4). The black
star denotes the transitional points from the empirical gait. The grey star denotes the new location of non-optimal transitional points to
create degenerate case. (c) The partition, vector field, and height function of simplified hexapod gait. The unit of color bar in all height
functions and PFDs is BL/π2.
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switching state can be close to optimal (affecting less than
0.01 BL/cycle from the optima). Surprisingly, we noticed
that only four out of six transitional points reside in the
range of close-to-optimal (resulting in less than 0.01 BL/
cycle compared to the optimum) contact switching shapes.
We then proceeded to analyze whether we could improve
the empirical gait by moving the non-optimal transitional
points. We noticed that the local optima in PFD (Figure
12(d) dashed box) are far from the prior and posterior
transitional points. Simply choosing the local optima as the
transitional points can lead to problems such as self-
intersection gait paths or gait paths with extremely large
perimeters. To avoid these problems, we chose to move the
non-optimal transitional points along their iso-height con-
tours such that they collide with their posterior transitional
points (labeled with grey stars). Notice that such sequenced
gaits create a degenerate case where the intermediate contact
states (Figure 12(b) dashed box) are essentially eliminated
from the gaits. Since we move the transitional points along
their iso-height contour, we expect the degenerate gait (with
four contact states) will have similar locomotion perfor-
mance as the original gait (with six contact states).

We verified our predictions by robophysical experi-
ments. The snapshots of the robot implementing degenerate
gait are shown in Figure 11. The robot experiments con-
firmed our prediction that the degenerate gait has similar
locomotion performance as the original gait.

5. Conclusion

In this paper, we designed a framework to systematically
optimize, analyze, and visualize the contact patterns that
lead to limbless or legged robot locomotion in a desired
direction. Specifically, we used a local connection to model
each contact pattern, such a connection maps the velocities
in the shape space to the position space. We then formulated
the optimal contact pattern problem as finding the optimal
boundary between each contact state in the shape space.
Using the Hodge–Helmholtz theorem, we estimated the line
integral in a vector field from its potential functions. By
taking the difference in potential functions, we were able to
search for global optimal transitional points in the shape
space. Note that in the examples shown in the paper, the
curl-free component has a much greater magnitude than the
divergence-free component. In cases where the divergence-
free and curl-free components have comparable magnitude,
we can first determine the transitional points from the curl-
free components and design the trajectory connecting
transitional points using the divergence-free components.

We first applied our framework to study sidewinding
limbless robots. We used our methods to modulate the angle
of motion for sidewinding robots moving in isotropic en-
vironments. Robophysical experiments verified that we
could modulate the angle of motion by controlling the
weights in convex combination ε. We then applied our
method to design a sidewinding gait for a 6-link robot. We
showed that with proper contact design, the 6-link robot

could achieve speeds as high as those with larger numbers of
links (e.g., a 12-link robot). In this way, we expand the
family of sidewinding gaits to robots with fewer motors and
therefore enables diverse effective limbless locomotors for
different environments/tasks.

We also applied our framework to a legged robot (a
hexapod robot with two body-bending joints). We showed
that while it is surprisingly challenging to directly design
gaits for systems with more than three contact states, we can
use our framework to simplify and/or further optimize the
existing gaits.

Extensions to our work include systematically using our
methods to study systems with more than three contact
states. It will include properly designing the physical
constraints on the feasible gaits and developing efficient
algorithms to obtain effective gaits.
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